We present a compact formula for the supersymmetric partition function of 2d N=(2,2), 3d N=2 and 4d N=1 gauge theories on $Sigma_g imes T^n$ with partial topological twist on $Sigma_g$, where $Sigma_g$ is a Riemann surface of arbitrary genus and $T^n$ is a torus with n=0,1,2, respectively. In 2d we also include certain local operator insertions, and in 3d we include Wilson line operator insertions along $S^1$. For genus g=1, the formula computes the Witten index. We present a few simple Abelian and non-Abelian examples, including new tests of non-perturbative dualities. We also show that the large N partition function of ABJM theory on $Sigma_g imes S^1$ reproduces the Bekenstein-Hawking entropy of BPS black holes in AdS$_4$ whose horizon has $Sigma_g$ topology.
Supersymmetric partition functions on Riemann surfaces / Benini, Francesco; Zaffaroni, Alberto. - 96(2017), pp. 13-46. ((Intervento presentato al convegno Conference String-Math 2015 tenutosi a Tsinghua Sanya International Mathematics Forum in Sanya, China nel December 31, 2015–January 4, 2016.
Titolo: | Supersymmetric partition functions on Riemann surfaces |
Autori: | Benini, Francesco; Zaffaroni, Alberto |
Titolo del libro: | String-Math 2015 |
Serie: | |
Editore: | American Mathematical Society & International Press of Boston |
Data di pubblicazione: | 2017 |
Volume: | 96 |
Pagina iniziale: | 13 |
Pagina finale: | 46 |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1090/pspum/096/01654 |
URL: | http://arxiv.org/abs/1605.06120v2 |
ISBN: | 9781470442767 978-1-4704-2951-5 |
Appare nelle tipologie: | 4.1 Contribution in Conference proceedings |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
1605.06120v2.pdf | Documento in Pre-print | Non specificato | Administrator Richiedi una copia |