I review topics of my talk in Alcalá, inspired by the paper [1]. An isomonodromic system with irregular singularity at z=∞ (and Fuchsian at z=0) is considered, such that z=∞ becomes resonant for some values of the deformation parameters. Namely, the eigenvalues of the leading matrix at z=∞ coalesce along a locus in the space of deformation parameters. I give a complete extension of the isomonodromy deformation theory in this case.

Deformations with a resonant irregular singularity / Guzzetti, Davide. - 256:(2018), pp. 239-250. (Intervento presentato al convegno Conference on Formal and Analytic Solutions of Diff. Equations, FASdiff 2017 tenutosi a Alcalá de Henares, Spain nel September 2017) [10.1007/978-3-319-99148-1_14].

Deformations with a resonant irregular singularity

Guzzetti, Davide
2018-01-01

Abstract

I review topics of my talk in Alcalá, inspired by the paper [1]. An isomonodromic system with irregular singularity at z=∞ (and Fuchsian at z=0) is considered, such that z=∞ becomes resonant for some values of the deformation parameters. Namely, the eigenvalues of the leading matrix at z=∞ coalesce along a locus in the space of deformation parameters. I give a complete extension of the isomonodromy deformation theory in this case.
2018
Formal and Analytic Solutions of Diff. Equations. FASdiff 2017
256
239
250
978-3-319-99147-4
978-3-319-99148-1
https://link.springer.com/chapter/10.1007/978-3-319-99148-1_14
Springer New York LLC
Guzzetti, Davide
File in questo prodotto:
File Dimensione Formato  
ProceedingsAlcalaSpringer.pdf

Open Access dal 01/01/2020

Descrizione: Articolo completo
Tipologia: Documento in Post-print
Licenza: Non specificato
Dimensione 148.71 kB
Formato Adobe PDF
148.71 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/87734
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact