We extend density functional perturbation theory for lattice dynamics with fully relativistic ultrasoft pseudopotentials to magnetic materials. Our approach is based on the application of the time-reversal operator to the Sternheimer linear system and to its self-consistent solutions. Moreover, we discuss how to include in the formalism the symmetry operations of the magnetic point group which require the time-reversal operator. We validate our implementation by comparison with the frozen phonon method in fcc Ni and in a monatomic ferromagnetic Pt wire.

Density functional perturbation theory for lattice dynamics with fully relativistic ultrasoft pseudopotentials: the magnetic case / Urru, A.; Dal Corso, A.. - In: PHYSICAL REVIEW. B. - ISSN 2469-9950. - 100:4(2019), pp. 1-6. [10.1103/PhysRevB.100.045115]

Density functional perturbation theory for lattice dynamics with fully relativistic ultrasoft pseudopotentials: the magnetic case

Urru A.
Membro del Collaboration group
;
Dal Corso A.
Membro del Collaboration group
2019-01-01

Abstract

We extend density functional perturbation theory for lattice dynamics with fully relativistic ultrasoft pseudopotentials to magnetic materials. Our approach is based on the application of the time-reversal operator to the Sternheimer linear system and to its self-consistent solutions. Moreover, we discuss how to include in the formalism the symmetry operations of the magnetic point group which require the time-reversal operator. We validate our implementation by comparison with the frozen phonon method in fcc Ni and in a monatomic ferromagnetic Pt wire.
100
4
1
6
045115
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.100.045115
https://arxiv.org/abs/1906.11673
Urru, A.; Dal Corso, A.
File in questo prodotto:
File Dimensione Formato  
PhysRevB.100.045115.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 289.06 kB
Formato Adobe PDF
289.06 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/102089
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact