We extend density functional perturbation theory for lattice dynamics with fully relativistic ultrasoft pseudopotentials to magnetic materials. Our approach is based on the application of the time-reversal operator to the Sternheimer linear system and to its self-consistent solutions. Moreover, we discuss how to include in the formalism the symmetry operations of the magnetic point group which require the time-reversal operator. We validate our implementation by comparison with the frozen phonon method in fcc Ni and in a monatomic ferromagnetic Pt wire.

Density functional perturbation theory for lattice dynamics with fully relativistic ultrasoft pseudopotentials: the magnetic case / Urru, A.; Dal Corso, A.. - In: PHYSICAL REVIEW. B. - ISSN 2469-9950. - 100:4(2019), pp. 1-6. [10.1103/PhysRevB.100.045115]

Density functional perturbation theory for lattice dynamics with fully relativistic ultrasoft pseudopotentials: the magnetic case

Urru A.
Membro del Collaboration group
;
Dal Corso A.
Membro del Collaboration group
2019

Abstract

We extend density functional perturbation theory for lattice dynamics with fully relativistic ultrasoft pseudopotentials to magnetic materials. Our approach is based on the application of the time-reversal operator to the Sternheimer linear system and to its self-consistent solutions. Moreover, we discuss how to include in the formalism the symmetry operations of the magnetic point group which require the time-reversal operator. We validate our implementation by comparison with the frozen phonon method in fcc Ni and in a monatomic ferromagnetic Pt wire.
100
4
1
6
045115
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.100.045115
https://arxiv.org/abs/1906.11673
Urru, A.; Dal Corso, A.
File in questo prodotto:
File Dimensione Formato  
PhysRevB.100.045115.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 289.06 kB
Formato Adobe PDF
289.06 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11767/102089
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact