We present a new technique, based on a proposed event-based strategy (Mattia & Del Giudice, 2000), for efficiently simulating large networks of simple model neurons. The strategy was based on the fact that interactions among neurons occur by means of events that are well localized in time (the action potentials) and relatively rare. In the interval between two of these events, the state variables associated with a model neuron or a synapse evolved deterministically and in a predictable way. Here, we extend the event-driven simulation strategy to the case in which the dynamics of the state variables in the inter-event intervals are stochastic. This extension captures both the situation in which the simulated neurons are inherently noisy and the case in which they are embedded in a very large network and receive a huge number of random synaptic inputs. We show how to effectively include the impact of large background populations into neuronal dynamics by means of the numerical evaluation of the statistical properties of single-model neurons under random current injection. The new simulation strategy allows the study of networks of interacting neurons with an arbitrary number of external afferents and inherent stochastic dynamics.

Event-driven simulation of spiking neurons with stochastic dynamics / Reutimann, J.; Giugliano, M.; Fusi, S.. - In: NEURAL COMPUTATION. - ISSN 0899-7667. - 15:4(2003), pp. 811-830. [10.1162/08997660360581912]

Event-driven simulation of spiking neurons with stochastic dynamics

Giugliano, M.;
2003-01-01

Abstract

We present a new technique, based on a proposed event-based strategy (Mattia & Del Giudice, 2000), for efficiently simulating large networks of simple model neurons. The strategy was based on the fact that interactions among neurons occur by means of events that are well localized in time (the action potentials) and relatively rare. In the interval between two of these events, the state variables associated with a model neuron or a synapse evolved deterministically and in a predictable way. Here, we extend the event-driven simulation strategy to the case in which the dynamics of the state variables in the inter-event intervals are stochastic. This extension captures both the situation in which the simulated neurons are inherently noisy and the case in which they are embedded in a very large network and receive a huge number of random synaptic inputs. We show how to effectively include the impact of large background populations into neuronal dynamics by means of the numerical evaluation of the statistical properties of single-model neurons under random current injection. The new simulation strategy allows the study of networks of interacting neurons with an arbitrary number of external afferents and inherent stochastic dynamics.
2003
15
4
811
830
https://doi.org/10.1162/08997660360581912
Reutimann, J.; Giugliano, M.; Fusi, S.
File in questo prodotto:
File Dimensione Formato  
reutimann2003.pdf

Open Access dal 02/08/2003

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 623.4 kB
Formato Adobe PDF
623.4 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/102936
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 39
social impact