We consider the general problem of quenching an interacting Bose gas from the noninteracting regime to the strongly repulsive limit described by the Tonks-Girardeau gas with the initial state being a Gaussian ensemble in terms of the bosons. A generic multipoint correlation function in the steady state can be described fully in terms of a Fredholm-like determinant suitable both for a numerical and for an analytical study in certain limiting cases. Finally, we extend the study to the presence of a smooth confining potential showing that, in the thermodynamic limit, the time evolution of the two-point function can be mapped to a classical problem.

Quenches from bosonic Gaussian initial states to the Tonks-Girardeau limit: Stationary states and effects of a confining potential / Bastianello, Alvise; Collura, Mario; Sotiriadis, Spyros. - In: PHYSICAL REVIEW. B. - ISSN 2469-9950. - 95:17(2017), pp. 1-12. [10.1103/PhysRevB.95.174303]

Quenches from bosonic Gaussian initial states to the Tonks-Girardeau limit: Stationary states and effects of a confining potential

Bastianello, Alvise;Collura, Mario;
2017-01-01

Abstract

We consider the general problem of quenching an interacting Bose gas from the noninteracting regime to the strongly repulsive limit described by the Tonks-Girardeau gas with the initial state being a Gaussian ensemble in terms of the bosons. A generic multipoint correlation function in the steady state can be described fully in terms of a Fredholm-like determinant suitable both for a numerical and for an analytical study in certain limiting cases. Finally, we extend the study to the presence of a smooth confining potential showing that, in the thermodynamic limit, the time evolution of the two-point function can be mapped to a classical problem.
2017
95
17
1
12
174303
https://arxiv.org/abs/1702.01729
Bastianello, Alvise; Collura, Mario; Sotiriadis, Spyros
File in questo prodotto:
File Dimensione Formato  
PhysRevB.95.174303.pdf

non disponibili

Descrizione: main article
Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 689.59 kB
Formato Adobe PDF
689.59 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/103450
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 17
social impact