We regard the work of Maulik and Toda, proposing a sheaf-theoretic approach to Gopakumar–Vafa invariants, as defining a BPS structure, that is, a collection of BPS invariants together with a central charge. Assuming their conjectures, we show that a canonical flat section of the flat connection corresponding to this BPS structure, at the level of formal power series, reproduces the Gromov–Witten partition function for all genera, up to some error terms in genus 0 and 1. This generalises a result of Bridgeland and Iwaki for the contribution from genus 0 Gopakumar–Vafa invariants.
A note on BPS structures and Gopakumar–Vafa invariants / Stoppa, Jacopo. - In: COMMUNICATIONS IN NUMBER THEORY AND PHYSICS. - ISSN 1931-4523. - 13:3(2019), pp. 627-645.
A note on BPS structures and Gopakumar–Vafa invariants
Jacopo Stoppa
2019-01-01
Abstract
We regard the work of Maulik and Toda, proposing a sheaf-theoretic approach to Gopakumar–Vafa invariants, as defining a BPS structure, that is, a collection of BPS invariants together with a central charge. Assuming their conjectures, we show that a canonical flat section of the flat connection corresponding to this BPS structure, at the level of formal power series, reproduces the Gromov–Witten partition function for all genera, up to some error terms in genus 0 and 1. This generalises a result of Bridgeland and Iwaki for the contribution from genus 0 Gopakumar–Vafa invariants.File | Dimensione | Formato | |
---|---|---|---|
CNTP_13_03_A05.pdf
non disponibili
Descrizione: Articolo principale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
204.92 kB
Formato
Adobe PDF
|
204.92 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1812.07454.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Non specificato
Dimensione
203 kB
Formato
Adobe PDF
|
203 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.