We regard the work of Maulik and Toda, proposing a sheaf-theoretic approach to Gopakumar–Vafa invariants, as defining a BPS structure, that is, a collection of BPS invariants together with a central charge. Assuming their conjectures, we show that a canonical flat section of the flat connection corresponding to this BPS structure, at the level of formal power series, reproduces the Gromov–Witten partition function for all genera, up to some error terms in genus 0 and 1. This generalises a result of Bridgeland and Iwaki for the contribution from genus 0 Gopakumar–Vafa invariants.

A note on BPS structures and Gopakumar–Vafa invariants / Stoppa, Jacopo. - In: COMMUNICATIONS IN NUMBER THEORY AND PHYSICS. - ISSN 1931-4523. - 13:3(2019), pp. 627-645.

A note on BPS structures and Gopakumar–Vafa invariants

Jacopo Stoppa
2019-01-01

Abstract

We regard the work of Maulik and Toda, proposing a sheaf-theoretic approach to Gopakumar–Vafa invariants, as defining a BPS structure, that is, a collection of BPS invariants together with a central charge. Assuming their conjectures, we show that a canonical flat section of the flat connection corresponding to this BPS structure, at the level of formal power series, reproduces the Gromov–Witten partition function for all genera, up to some error terms in genus 0 and 1. This generalises a result of Bridgeland and Iwaki for the contribution from genus 0 Gopakumar–Vafa invariants.
2019
13
3
627
645
https://www.intlpress.com/site/pub/pages/journals/items/cntp/content/vols/0013/0003/a005/index.php
Stoppa, Jacopo
File in questo prodotto:
File Dimensione Formato  
CNTP_13_03_A05.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 204.92 kB
Formato Adobe PDF
204.92 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1812.07454.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Non specificato
Dimensione 203 kB
Formato Adobe PDF
203 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/104358
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact