Renormalization group (RG) and resummation techniques have been used in N-component.4 theories at fixed dimensions below four to determine the presence of nontrivial IR fixed points and to compute the associated critical properties. Since the coupling constant is relevant in d < 4 dimensions, the RG is entirely governed by renormalization scheme-dependent terms. We show that the known proofs of the Borel summability of observables depend on the renormalization scheme and apply only in "minimal" ones, equivalent in d = 2 to an operatorial normal ordering prescription, where the beta-function is trivial to all orders in perturbation theory. The presence of a nontrivial fixed point can be unambiguously established by considering a physical observable, like the mass gap, with no need of RG techniques. Focusing on the N = 1, d = 2.4 theory, we define a one-parameter family of renormalization schemes where Borel summability is guaranteed and study the accuracy on the determination of the critical exponent. as the scheme is varied. While the critical coupling shows a significant sensitivity on the scheme, the accuracy in. is essentially constant. As a by-product of our analysis, we improve the determination of. obtained with RG methods by computing three more orders in perturbation theory.

Renormalization scheme dependence, RG flow, and Borel summability in phi^4 Theories in d<4 / Sberveglieri, Giacomo; Serone, Marco; Spada, Gabriele. - In: PHYSICAL REVIEW D. - ISSN 2470-0010. - 100:4(2019), pp. 1-14. [10.1103/PhysRevD.100.045008]

Renormalization scheme dependence, RG flow, and Borel summability in phi^4 Theories in d<4

Giacomo Sberveglieri
;
Marco Serone
;
Gabriele Spada
2019-01-01

Abstract

Renormalization group (RG) and resummation techniques have been used in N-component.4 theories at fixed dimensions below four to determine the presence of nontrivial IR fixed points and to compute the associated critical properties. Since the coupling constant is relevant in d < 4 dimensions, the RG is entirely governed by renormalization scheme-dependent terms. We show that the known proofs of the Borel summability of observables depend on the renormalization scheme and apply only in "minimal" ones, equivalent in d = 2 to an operatorial normal ordering prescription, where the beta-function is trivial to all orders in perturbation theory. The presence of a nontrivial fixed point can be unambiguously established by considering a physical observable, like the mass gap, with no need of RG techniques. Focusing on the N = 1, d = 2.4 theory, we define a one-parameter family of renormalization schemes where Borel summability is guaranteed and study the accuracy on the determination of the critical exponent. as the scheme is varied. While the critical coupling shows a significant sensitivity on the scheme, the accuracy in. is essentially constant. As a by-product of our analysis, we improve the determination of. obtained with RG methods by computing three more orders in perturbation theory.
100
4
1
14
045008
Sberveglieri, Giacomo; Serone, Marco; Spada, Gabriele
File in questo prodotto:
File Dimensione Formato  
PhysRevD.100.045008.pdf

accesso aperto

Descrizione: Article funded by SCOAP3
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 639.33 kB
Formato Adobe PDF
639.33 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/104474
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact