In a measure space (X, A, μ) , we consider two measurable functions f, g: E→ R, for some E∈ A. We prove that the property of having equal p-norms when p varies in some infinite set P⊆ [ 1 , + ∞) is equivalent to the following condition: μ(x∈E:|f(x)|>α)=μ(x∈E:|g(x)|>α)for allα≥0.

On functions having coincident p-norms / Klun, G.. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - 199:3(2020), pp. 955-968. [10.1007/s10231-019-00907-z]

On functions having coincident p-norms

Klun G.
2020

Abstract

In a measure space (X, A, μ) , we consider two measurable functions f, g: E→ R, for some E∈ A. We prove that the property of having equal p-norms when p varies in some infinite set P⊆ [ 1 , + ∞) is equivalent to the following condition: μ(x∈E:|f(x)|>α)=μ(x∈E:|g(x)|>α)for allα≥0.
199
3
955
968
https://link.springer.com/article/10.1007%2Fs10231-019-00907-z
Klun, G.
File in questo prodotto:
File Dimensione Formato  
Klun_revised 01_07_19.pdf

embargo fino al 20/09/2020

Tipologia: Documento in Post-print
Licenza: Non specificato
Dimensione 253.35 kB
Formato Adobe PDF
253.35 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11767/105240
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact