I review my talk at Bedlewo, dealing with a differential system depending on deformation parametrs, with a Fuchsian singularity at z=0, and an irregular one at z=infinity of Poincare' rank 1. The eigenvalues of the leading matrix at z=infinity may coalesce along a coalescence locus. In the recent paper with Cotti and Dubrovin, the isomonodromic deformation theory has been extended to this non-generic case, which was not considered by Jimbo, Miwa and Ueno. We explain this extension, with applications.

Isomonodromy Deformations with Coalescent Eigenvalues and Applications - Będlewo 2018 / Guzzetti, Davide. - (2020), pp. 313-325. ((Intervento presentato al convegno Complex Differential and Difference Equations tenutosi a Bedlewo, Poland nel September 2-15, 2018 [10.1515/9783110611427-011].

Isomonodromy Deformations with Coalescent Eigenvalues and Applications - Będlewo 2018

Guzzetti, Davide
2020

Abstract

I review my talk at Bedlewo, dealing with a differential system depending on deformation parametrs, with a Fuchsian singularity at z=0, and an irregular one at z=infinity of Poincare' rank 1. The eigenvalues of the leading matrix at z=infinity may coalesce along a coalescence locus. In the recent paper with Cotti and Dubrovin, the isomonodromic deformation theory has been extended to this non-generic case, which was not considered by Jimbo, Miwa and Ueno. We explain this extension, with applications.
Complex Differential and Difference Equations
313
325
978-3-11-060952-3
https://www.degruyter.com/view/product/506612
De Gruyter
Guzzetti, Davide
File in questo prodotto:
File Dimensione Formato  
Seminar.pdf

accesso aperto

Descrizione: articolo principale
Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 339.16 kB
Formato Adobe PDF
339.16 kB Adobe PDF Visualizza/Apri
2019-PUBLISHED.pdf

non disponibili

Descrizione: articolo principale editoriale
Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 432.27 kB
Formato Adobe PDF
432.27 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/108778
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 2
social impact