Within the ground-state auxiliary-field quantum Monte Carlo technique, we introduce discrete Hubbard-Stratonovich transformations (HSTs) that are also suitable for spatially inhomogeneous trial functions. The discrete auxiliary fields introduced here are coupled to local spin or charge operators fluctuating around their Hartree-Fock values. The formalism can be considered a generalization of the discrete HSTs by J. E. Hirsch [Phys. Rev. B 28, 4059 (1983)PRBMDO0163-182910.1103/PhysRevB.28.4059] or a compactification of the shifted-contour auxiliary-field Monte Carlo formalism by N. Rom et al. [Chem. Phys. Lett. 270, 382 (1997)CHPLBC0009-261410.1016/S0009-2614(97)00370-9]. An improvement of the acceptance ratio is found for a real auxiliary field, while an improvement of the average sign is found for a purely imaginary auxiliary field. Efficiencies of the different HSTs are tested in the single-band Hubbard model at and away from half filling by studying the staggered magnetization and energy expectation values, respectively.
Benchmark study of an auxiliary-field quantum Monte Carlo technique for the Hubbard model with shifted-discrete Hubbard-Stratonovich transformations / Seki, K.; Sorella, S.. - In: PHYSICAL REVIEW. B. - ISSN 2469-9950. - 99:14(2019), pp. 1-9. [10.1103/PhysRevB.99.144407]
Benchmark study of an auxiliary-field quantum Monte Carlo technique for the Hubbard model with shifted-discrete Hubbard-Stratonovich transformations
Sorella S.Membro del Collaboration group
2019-01-01
Abstract
Within the ground-state auxiliary-field quantum Monte Carlo technique, we introduce discrete Hubbard-Stratonovich transformations (HSTs) that are also suitable for spatially inhomogeneous trial functions. The discrete auxiliary fields introduced here are coupled to local spin or charge operators fluctuating around their Hartree-Fock values. The formalism can be considered a generalization of the discrete HSTs by J. E. Hirsch [Phys. Rev. B 28, 4059 (1983)PRBMDO0163-182910.1103/PhysRevB.28.4059] or a compactification of the shifted-contour auxiliary-field Monte Carlo formalism by N. Rom et al. [Chem. Phys. Lett. 270, 382 (1997)CHPLBC0009-261410.1016/S0009-2614(97)00370-9]. An improvement of the acceptance ratio is found for a real auxiliary field, while an improvement of the average sign is found for a purely imaginary auxiliary field. Efficiencies of the different HSTs are tested in the single-band Hubbard model at and away from half filling by studying the staggered magnetization and energy expectation values, respectively.File | Dimensione | Formato | |
---|---|---|---|
Benchmark_Seki.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Tutti i diritti riservati
Dimensione
775.04 kB
Formato
Adobe PDF
|
775.04 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.