Introduction: Modern imaging techniques such as blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) allow the non-invasive and indirect measurement of brain activity. Whether changes in signal intensity can be detected in small brainstem regions during a cold pressor test (CPT) has not been explored thoroughly. The aim of this study was to measure whole brain and brainstem BOLD signal intensity changes in response to a modified CPT. Methods: BOLD fMRI was measured in healthy normotensive participants during a randomized crossover study (modified CPT vs. control test) using ultra-high field 7 Tesla MRI scanner. Data were analyzed using Statistical Parametric Mapping (SPM) in a whole-brain approach, and with a brainstem-specific analysis using the spatially unbiased infra-tentorial template (SUIT) toolbox. Blood pressure (BP) and hormonal responses (norepinephrine and epinephrine levels) were also measured. Paired t-test statistics were used to compare conditions. Results: Eleven participants (six women, mean age 28 ± 8.9 years) were analyzed. Mean arterial BP increased from 83 ± 12 mm Hg to 87 ± 12 mm Hg (p = 0.0009) during the CPT. Whole-brain analysis revealed significant activations linked to the CPT in the right supplementary motor cortex, midcingulate (bilateral) and the right anterior insular cortex. The brainstem-specific analysis showed significant activations in the dorsal medulla. Conclusion: Changes in BOLD fMRI signal intensity in brainstem regions during a CPT can be detected, and show an increased response during a cold stress in healthy volunteers. Consequently, BOLD fMRI at 7T is a promising tool to explore and acquire new insights in the comprehension of neurogenic hypertension.

Brainstem Correlates of a Cold Pressor Test Measured by Ultra-High Field fMRI / Hendriks-Balk, M. C.; Megdiche, F.; Pezzi, L.; Reynaud, O.; Da Costa, S.; Bueti, D.; Van De Ville, D.; Wuerzner, G.. - In: FRONTIERS IN NEUROSCIENCE. - ISSN 1662-4548. - 14:(2020), pp. 1-9. [10.3389/fnins.2020.00039]

Brainstem Correlates of a Cold Pressor Test Measured by Ultra-High Field fMRI

Bueti, D.
Methodology
;
2020

Abstract

Introduction: Modern imaging techniques such as blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) allow the non-invasive and indirect measurement of brain activity. Whether changes in signal intensity can be detected in small brainstem regions during a cold pressor test (CPT) has not been explored thoroughly. The aim of this study was to measure whole brain and brainstem BOLD signal intensity changes in response to a modified CPT. Methods: BOLD fMRI was measured in healthy normotensive participants during a randomized crossover study (modified CPT vs. control test) using ultra-high field 7 Tesla MRI scanner. Data were analyzed using Statistical Parametric Mapping (SPM) in a whole-brain approach, and with a brainstem-specific analysis using the spatially unbiased infra-tentorial template (SUIT) toolbox. Blood pressure (BP) and hormonal responses (norepinephrine and epinephrine levels) were also measured. Paired t-test statistics were used to compare conditions. Results: Eleven participants (six women, mean age 28 ± 8.9 years) were analyzed. Mean arterial BP increased from 83 ± 12 mm Hg to 87 ± 12 mm Hg (p = 0.0009) during the CPT. Whole-brain analysis revealed significant activations linked to the CPT in the right supplementary motor cortex, midcingulate (bilateral) and the right anterior insular cortex. The brainstem-specific analysis showed significant activations in the dorsal medulla. Conclusion: Changes in BOLD fMRI signal intensity in brainstem regions during a CPT can be detected, and show an increased response during a cold stress in healthy volunteers. Consequently, BOLD fMRI at 7T is a promising tool to explore and acquire new insights in the comprehension of neurogenic hypertension.
14
1
9
39
Hendriks-Balk, M. C.; Megdiche, F.; Pezzi, L.; Reynaud, O.; Da Costa, S.; Bueti, D.; Van De Ville, D.; Wuerzner, G.
File in questo prodotto:
File Dimensione Formato  
fnins-14-00039.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.12 MB
Formato Adobe PDF
1.12 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/110854
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact