We study the divergent terms and the finite term in the expansion of the holographic entanglement entropy as the ultraviolet cutoff vanishes for smooth spatial regions having arbitrary shape, when the gravitational background is a four dimensional asymptotically Lifshitz spacetime with hyperscaling violation, in a certain range of the hyperscaling parameter. Both static and time dependent backgrounds are considered. For the coefficients of the divergent terms and for the finite term, analytic expressions valid for any smooth entangling curve are obtained. The analytic results for the finite terms are checked through a numerical analysis focussed on disks and ellipses.

On shape dependence of holographic entanglement entropy in AdS4/CFT3 with Lifshitz scaling and hyperscaling violation / Cavini, G.; Seminara, D.; Sisti, J.; Tonni, E.. - In: JOURNAL OF HIGH ENERGY PHYSICS. - ISSN 1029-8479. - 2020:2(2020), pp. 1-55. [10.1007/JHEP02(2020)172]

On shape dependence of holographic entanglement entropy in AdS4/CFT3 with Lifshitz scaling and hyperscaling violation

Sisti, J.
;
Tonni, E.
2020-01-01

Abstract

We study the divergent terms and the finite term in the expansion of the holographic entanglement entropy as the ultraviolet cutoff vanishes for smooth spatial regions having arbitrary shape, when the gravitational background is a four dimensional asymptotically Lifshitz spacetime with hyperscaling violation, in a certain range of the hyperscaling parameter. Both static and time dependent backgrounds are considered. For the coefficients of the divergent terms and for the finite term, analytic expressions valid for any smooth entangling curve are obtained. The analytic results for the finite terms are checked through a numerical analysis focussed on disks and ellipses.
2020
2020
2
1
55
172
http://arxiv.org/abs/1907.10030v1
Cavini, G.; Seminara, D.; Sisti, J.; Tonni, E.
File in questo prodotto:
File Dimensione Formato  
CSST19shape.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 5.73 MB
Formato Adobe PDF
5.73 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/110904
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact