We consider the entanglement Hamiltonian for an interval in a chain of free fermions in its ground state and show that the lattice expression goes over into the conformal one if one includes the hopping to distant neighbours in the continuum limit. For an infinite chain, this can be done analytically for arbitrary fillings and is shown to be the consequence of the particular structure of the entanglement Hamiltonian, while for finite rings or temperatures the result is based on numerical calculations.

On the continuum limit of the entanglement Hamiltonian / Eisler, V.; Tonni, E.; Peschel, I.. - In: JOURNAL OF STATISTICAL MECHANICS: THEORY AND EXPERIMENT. - ISSN 1742-5468. - 2019:7(2019), pp. 1-22. [10.1088/1742-5468/ab1f0e]

On the continuum limit of the entanglement Hamiltonian

Tonni, E.;
2019-01-01

Abstract

We consider the entanglement Hamiltonian for an interval in a chain of free fermions in its ground state and show that the lattice expression goes over into the conformal one if one includes the hopping to distant neighbours in the continuum limit. For an infinite chain, this can be done analytically for arbitrary fillings and is shown to be the consequence of the particular structure of the entanglement Hamiltonian, while for finite rings or temperatures the result is based on numerical calculations.
2019
2019
7
1
22
073101
https://arxiv.org/abs/1902.04474
Eisler, V.; Tonni, E.; Peschel, I.
File in questo prodotto:
File Dimensione Formato  
ETP19eh.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 261.67 kB
Formato Adobe PDF
261.67 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/110912
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 34
social impact