The possibility to exploit quantum coherence to strongly enhance the efficiency of charge transport in solid state devices working at ambient conditions would pave the way to disruptive technological applications. In this work, we tackle the problem of the quantum transport of photogenerated electronic excitations subject to dephasing and on-site Coulomb interactions. We show that the transport to a continuum of states representing metallic collectors can be optimized by exploiting the "superradiance" phenomena. We demonstrate that this is a coherent effect which is robust against dephasing and electron-electron interactions in a parameters range that is compatible with actual implementation in few-monolayer transition-metal-oxide (TMO) heterostructures.
Towards high-temperature coherence-enhanced transport in heterostructures of a few atomic layers / Kropf, C. M.; Valli, A.; Franceschini, P.; Celardo, G. L.; Capone, M.; Giannetti, C.; Borgonovi, F.. - In: PHYSICAL REVIEW. B. - ISSN 2469-9950. - 100:3(2019), pp. 1-15. [10.1103/PhysRevB.100.035126]
Towards high-temperature coherence-enhanced transport in heterostructures of a few atomic layers
Valli A.;Capone M.;
2019-01-01
Abstract
The possibility to exploit quantum coherence to strongly enhance the efficiency of charge transport in solid state devices working at ambient conditions would pave the way to disruptive technological applications. In this work, we tackle the problem of the quantum transport of photogenerated electronic excitations subject to dephasing and on-site Coulomb interactions. We show that the transport to a continuum of states representing metallic collectors can be optimized by exploiting the "superradiance" phenomena. We demonstrate that this is a coherent effect which is robust against dephasing and electron-electron interactions in a parameters range that is compatible with actual implementation in few-monolayer transition-metal-oxide (TMO) heterostructures.File | Dimensione | Formato | |
---|---|---|---|
PhysRevB.100.035126.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
1.98 MB
Formato
Adobe PDF
|
1.98 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1812.08105v2.pdf
accesso aperto
Descrizione: Postprint
Tipologia:
Documento in Post-print
Licenza:
Non specificato
Dimensione
5.66 MB
Formato
Adobe PDF
|
5.66 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.