In the existing language for tensor calculus on RCD spaces, tensor fields are only defined m-a.e. In this paper we introduce the concept of tensor field defined ‘2-capacity-a.e.’ and discuss in which sense Sobolev vector fields have a 2-capacity-a.e. uniquely defined quasi-continuous representative.
Quasi-Continuous Vector Fields on RCD Spaces / Debin, C.; Gigli, N.; Pasqualetto, E.. - In: POTENTIAL ANALYSIS. - ISSN 0926-2601. - 54:(2021), pp. 183-211. [10.1007/s11118-019-09823-6]
Quasi-Continuous Vector Fields on RCD Spaces
Debin C.;Gigli N.
;Pasqualetto E.
2021-01-01
Abstract
In the existing language for tensor calculus on RCD spaces, tensor fields are only defined m-a.e. In this paper we introduce the concept of tensor field defined ‘2-capacity-a.e.’ and discuss in which sense Sobolev vector fields have a 2-capacity-a.e. uniquely defined quasi-continuous representative.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
capacity_RCD-rev.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Non specificato
Dimensione
431.54 kB
Formato
Adobe PDF
|
431.54 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.