We introduce a notion of differential of a Sobolev map between metric spaces. The differential is given in the framework of tangent and cotangent modules of metric measure spaces, developed by the first author. We prove that our notion is consistent with Kirchheim's metric differential when the source is a Euclidean space, and with the abstract differential provided by the first author when the target is R. We also show compatibility with the concept of co-local weak differential introduced by Convent and Van Schaftingen.

Differential of metric valued Sobolev maps / Gigli, N.; Pasqualetto, E.; Soultanis, E.. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - 278:6(2020), pp. 1-18. [10.1016/j.jfa.2019.108403]

Differential of metric valued Sobolev maps

Gigli N.
;
Pasqualetto E.;Soultanis E.
2020-01-01

Abstract

We introduce a notion of differential of a Sobolev map between metric spaces. The differential is given in the framework of tangent and cotangent modules of metric measure spaces, developed by the first author. We prove that our notion is consistent with Kirchheim's metric differential when the source is a Euclidean space, and with the abstract differential provided by the first author when the target is R. We also show compatibility with the concept of co-local weak differential introduced by Convent and Van Schaftingen.
2020
278
6
1
18
108403
https://www.sciencedirect.com/science/article/pii/S0022123619303970?via=ihub
https://arxiv.org/abs/1807.10063v1
Gigli, N.; Pasqualetto, E.; Soultanis, E.
File in questo prodotto:
File Dimensione Formato  
diff_revised.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 358.37 kB
Formato Adobe PDF
358.37 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/111340
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact