We describe the spectral statistics of the first finite number of eigenvalues in a newly-forming band on the hard-edge of the spectrum of a random Hermitean matrix model. It is found that in a suitable scaling regime, they are described by the same spectral statistics of a finite-size Laguerre-type matrix model. The method is rigorously based on the Riemann-Hilbert analysis of the corresponding orthogonal polynomials.

First Colonization of a Hard-Edge in Random Matrix Theory / Bertola, M.; Lee, S. Y.. - In: CONSTRUCTIVE APPROXIMATION. - ISSN 0176-4276. - 31:2(2010), pp. 231-257. [10.1007/s00365-009-9052-4]

First Colonization of a Hard-Edge in Random Matrix Theory

Bertola, M.;
2010-01-01

Abstract

We describe the spectral statistics of the first finite number of eigenvalues in a newly-forming band on the hard-edge of the spectrum of a random Hermitean matrix model. It is found that in a suitable scaling regime, they are described by the same spectral statistics of a finite-size Laguerre-type matrix model. The method is rigorously based on the Riemann-Hilbert analysis of the corresponding orthogonal polynomials.
2010
31
2
231
257
https://arxiv.org/abs/0804.1111
https://link.springer.com/article/10.1007%2Fs00365-009-9052-4
Bertola, M.; Lee, S. Y.
File in questo prodotto:
File Dimensione Formato  
Bertola-SYL-First colonization hard-edge.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 507.63 kB
Formato Adobe PDF
507.63 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/11336
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact