We describe the spectral statistics of the first finite number of eigenvalues in a newly-forming band on the hard-edge of the spectrum of a random Hermitean matrix model. It is found that in a suitable scaling regime, they are described by the same spectral statistics of a finite-size Laguerre-type matrix model. The method is rigorously based on the Riemann-Hilbert analysis of the corresponding orthogonal polynomials.
First Colonization of a Hard-Edge in Random Matrix Theory / Bertola, M.; Lee, S. Y.. - In: CONSTRUCTIVE APPROXIMATION. - ISSN 0176-4276. - 31:2(2010), pp. 231-257. [10.1007/s00365-009-9052-4]
First Colonization of a Hard-Edge in Random Matrix Theory
Bertola, M.;
2010-01-01
Abstract
We describe the spectral statistics of the first finite number of eigenvalues in a newly-forming band on the hard-edge of the spectrum of a random Hermitean matrix model. It is found that in a suitable scaling regime, they are described by the same spectral statistics of a finite-size Laguerre-type matrix model. The method is rigorously based on the Riemann-Hilbert analysis of the corresponding orthogonal polynomials.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Bertola-SYL-First colonization hard-edge.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
507.63 kB
Formato
Adobe PDF
|
507.63 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.