We conjecture that the Joyce-Song wall-crossing formula for Donaldson-Thomas invariants arises naturally from an asymptotic expansion in the field-theoretic work of Gaiotto, Moore, and Neitzke. This would also give a new perspective on how the formulae of Joyce and Song and of Kontsevich and Soibelman are related. We check the conjecture in many examples.

Joyce-Song wall-crossing as an asymptotic expansion / Stoppa, Jacopo. - In: KYOTO JOURNAL OF MATHEMATICS. - ISSN 2156-2261. - 54:1(2014), pp. 103-156. [10.1215/21562261-2400292]

Joyce-Song wall-crossing as an asymptotic expansion

Stoppa, Jacopo
2014-01-01

Abstract

We conjecture that the Joyce-Song wall-crossing formula for Donaldson-Thomas invariants arises naturally from an asymptotic expansion in the field-theoretic work of Gaiotto, Moore, and Neitzke. This would also give a new perspective on how the formulae of Joyce and Song and of Kontsevich and Soibelman are related. We check the conjecture in many examples.
2014
54
1
103
156
http://projecteuclid.org/euclid.kjm/1394804793#abstract
https://arxiv.org/abs/1112.2174
Stoppa, Jacopo
File in questo prodotto:
File Dimensione Formato  
Stoppa_J.pdf

Open Access dal 01/01/2016

Tipologia: Documento in Post-print
Licenza: Non specificato
Dimensione 358.67 kB
Formato Adobe PDF
358.67 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/11368
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 6
social impact