We introduce a family of spectral triples that describe the curved noncommutative two-torus. The relevant family of new Dirac operators is given by rescaling one of two terms in the flat Dirac operator. We compute the dressed scalar curvature and show that the Gauss-Bonnet theorem holds (which is not covered by the general result of Connes and Moscovici).

An asymmetric noncommutative torus

Dabrowski, Ludwik;SITARZ, Andrzej Wojciech
2015-01-01

Abstract

We introduce a family of spectral triples that describe the curved noncommutative two-torus. The relevant family of new Dirac operators is given by rescaling one of two terms in the flat Dirac operator. We compute the dressed scalar curvature and show that the Gauss-Bonnet theorem holds (which is not covered by the general result of Connes and Moscovici).
2015
11
1
11
075
10.3842/SIGMA.2015.075
https://arxiv.org/abs/1406.4645
http://www.emis.de/journals/SIGMA/2015/075/
Dabrowski, Ludwik; Sitarz, Andrzej Wojciech
File in questo prodotto:
File Dimensione Formato  
SIGMA,2015,11,075.pdf

non disponibili

Licenza: Non specificato
Dimensione 380.61 kB
Formato Adobe PDF
380.61 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/11393
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 23
social impact