We translate the concept of the join of topological spaces to the language of C∗-algebras, replace the C∗-algebra of functions on the interval [0,1] with evaluation maps at 0 and 1 by a unital C∗-algebra C with appropriate two surjections, and introduce the notion of the fusion of unital C∗-algebras. An appropriate modification of this construction yields the fusion comodule algebra of a comodule algebra P with the coacting Hopf algebra H. We prove that, if the comodule algebra P is principal, then so is the fusion comodule algebra. When C=C([0,1]) and the two surjections are evaluation maps at 0 and 1, this result is a noncommutative-algebraic incarnation of the fact that, for a compact Hausdorff principal G-bundle X, the diagonal action of G on the join X∗G is free.

Equivariant Join and Fusion of Noncommutative Algebras

Dabrowski, Ludwik;Hajac, Piotr Mieczysław
2015-01-01

Abstract

We translate the concept of the join of topological spaces to the language of C∗-algebras, replace the C∗-algebra of functions on the interval [0,1] with evaluation maps at 0 and 1 by a unital C∗-algebra C with appropriate two surjections, and introduce the notion of the fusion of unital C∗-algebras. An appropriate modification of this construction yields the fusion comodule algebra of a comodule algebra P with the coacting Hopf algebra H. We prove that, if the comodule algebra P is principal, then so is the fusion comodule algebra. When C=C([0,1]) and the two surjections are evaluation maps at 0 and 1, this result is a noncommutative-algebraic incarnation of the fact that, for a compact Hausdorff principal G-bundle X, the diagonal action of G on the join X∗G is free.
2015
11
1
7
082
10.3842/SIGMA.2015.082
https://arxiv.org/abs/1407.6020
http://www.emis.de/journals/SIGMA/2015/082/
Dabrowski, Ludwik; Hadfield, T; Hajac, Piotr Mieczysław
File in questo prodotto:
File Dimensione Formato  
SIGMA,2015,11,082.pdf

non disponibili

Licenza: Non specificato
Dimensione 336.23 kB
Formato Adobe PDF
336.23 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/11394
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 16
social impact