We study spectral triples over noncommutative principal U(1) bundles. Basing on the classical situation and the abstract algebraic approach, we propose an operatorial definition for a connection and compatibility between the connection and the Dirac operator on the total space and on the base space of the bundle. We analyze in details the example of the noncommutative three-torus viewed as a U(1) bundle over the noncommutative two-torus and find all connections compatible with an admissible Dirac operator. Conversely, we find a family of new Dirac operators on the noncommutative tori, which arise from the base-space Dirac operator and a suitable connection.
Noncommutative Circle Bundles and New Dirac Operators
Dabrowski, Ludwik;
2013-01-01
Abstract
We study spectral triples over noncommutative principal U(1) bundles. Basing on the classical situation and the abstract algebraic approach, we propose an operatorial definition for a connection and compatibility between the connection and the Dirac operator on the total space and on the base space of the bundle. We analyze in details the example of the noncommutative three-torus viewed as a U(1) bundle over the noncommutative two-torus and find all connections compatible with an admissible Dirac operator. Conversely, we find a family of new Dirac operators on the noncommutative tori, which arise from the base-space Dirac operator and a suitable connection.File | Dimensione | Formato | |
---|---|---|---|
CMP318.pdf
non disponibili
Licenza:
Non specificato
Dimensione
277.72 kB
Formato
Adobe PDF
|
277.72 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.