We consider commuting operators obtained by quantization of Hamiltonians of the Hopf (aka dispersionless KdV) hierarchy. Such operators naturally arise in the setting of Symplectic Field Theory (SFT). A complete set of common eigenvectors of these operators is given by Schur polynomials. We use this result for computing the SFT potential of a disk. © 2015, Springer International Publishing.
Symplectic field theory of a disk, quantum integrable systems, and Schur polynomials
Dubrovin, Boris
2016-01-01
Abstract
We consider commuting operators obtained by quantization of Hamiltonians of the Hopf (aka dispersionless KdV) hierarchy. Such operators naturally arise in the setting of Symplectic Field Theory (SFT). A complete set of common eigenvectors of these operators is given by Schur polynomials. We use this result for computing the SFT potential of a disk. © 2015, Springer International Publishing.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Dubrovin_2015.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
620.17 kB
Formato
Adobe PDF
|
620.17 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.