We consider commuting operators obtained by quantization of Hamiltonians of the Hopf (aka dispersionless KdV) hierarchy. Such operators naturally arise in the setting of Symplectic Field Theory (SFT). A complete set of common eigenvectors of these operators is given by Schur polynomials. We use this result for computing the SFT potential of a disk. © 2015, Springer International Publishing.

Symplectic field theory of a disk, quantum integrable systems, and Schur polynomials

Dubrovin, Boris
2016-01-01

Abstract

We consider commuting operators obtained by quantization of Hamiltonians of the Hopf (aka dispersionless KdV) hierarchy. Such operators naturally arise in the setting of Symplectic Field Theory (SFT). A complete set of common eigenvectors of these operators is given by Schur polynomials. We use this result for computing the SFT potential of a disk. © 2015, Springer International Publishing.
2016
17
7
1595
1613
https://arxiv.org/abs/1407.5824v2
http://cdsads.u-strasbg.fr/abs/2016AnHP...17.1595D
Dubrovin, Boris
File in questo prodotto:
File Dimensione Formato  
Dubrovin_2015.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 620.17 kB
Formato Adobe PDF
620.17 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/11467
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact