We study the Dirichlet problem for Hamilton-Jacobi equations of the form \begin{displaymath} \begin{cases} H(Du(x)) - a(x) = 0 & \ \textrm{in} \ \O\cr u(x)=\varphi(x) & \ \textrm{on} \ \partial \O, \end{cases} \end{displaymath} under suitable hypotheses on the function $H$ and without continuity assumptions on the map $a$. We find a class of maps $a$ contained in the space $L^\infty(\O)$ for which the problem admits a (maximal) generalized solution, providing a generalization of the notion of viscosity solution.
Generalized solutions for a class of Hamilton-Jacobi equations / Zagatti, Sandro. - In: ADVANCES IN PURE AND APPLIED MATHEMATICS. - ISSN 1867-1152. - 7:2(2016), pp. 123-141. [10.1515/apam-2015-0014]
Generalized solutions for a class of Hamilton-Jacobi equations
Zagatti, Sandro
2016-01-01
Abstract
We study the Dirichlet problem for Hamilton-Jacobi equations of the form \begin{displaymath} \begin{cases} H(Du(x)) - a(x) = 0 & \ \textrm{in} \ \O\cr u(x)=\varphi(x) & \ \textrm{on} \ \partial \O, \end{cases} \end{displaymath} under suitable hypotheses on the function $H$ and without continuity assumptions on the map $a$. We find a class of maps $a$ contained in the space $L^\infty(\O)$ for which the problem admits a (maximal) generalized solution, providing a generalization of the notion of viscosity solution.File | Dimensione | Formato | |
---|---|---|---|
apam-2015-0014.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
578.37 kB
Formato
Adobe PDF
|
578.37 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.