The regrowth of severed axons is fundamental to reestablish motor control after spinal-cord injury (SCI). Ongoing efforts to promote axonal regeneration after SCI have involved multiple strategies that have been only partially successful. Our study introduces an artificial carbon-nanotube based scaffold that, once implanted in SCI rats, improves motor function recovery. Confocal microscopy analysis plus fiber tracking by magnetic resonance imaging and neurotracer labeling of long-distance corticospinal axons suggest that recovery might be partly attributable to successful crossing of the lesion site by regenerating fibers. Since manipulating SCI microenvironment properties, such as mechanical and electrical ones, may promote biological responses, we propose this artificial scaffold as a prototype to exploit the physics governing spinal regenerative plasticity.
Functional rewiring across spinal injuries via biomimetic nanofiber scaffolds / Usmani, Sadaf; Franceschi Biagioni, Audrey; Medelin, Manuela; Scaini, Denis; Casani, Raffaele; Aurand, Emily R; Padro, Daniel; Egimendia, Ander; Ramos Cabrer, Pedro; Scarselli, Manuela; De Crescenzi, Maurizio; Prato, Maurizio; Ballerini, Laura. - In: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. - ISSN 0027-8424. - 117:41(2020), pp. 25212-25218. [10.1073/pnas.2005708117]
Functional rewiring across spinal injuries via biomimetic nanofiber scaffolds
Usmani, Sadaf;Franceschi Biagioni, Audrey;Medelin, Manuela;Scaini, Denis;Casani, Raffaele;Ballerini, Laura
2020-01-01
Abstract
The regrowth of severed axons is fundamental to reestablish motor control after spinal-cord injury (SCI). Ongoing efforts to promote axonal regeneration after SCI have involved multiple strategies that have been only partially successful. Our study introduces an artificial carbon-nanotube based scaffold that, once implanted in SCI rats, improves motor function recovery. Confocal microscopy analysis plus fiber tracking by magnetic resonance imaging and neurotracer labeling of long-distance corticospinal axons suggest that recovery might be partly attributable to successful crossing of the lesion site by regenerating fibers. Since manipulating SCI microenvironment properties, such as mechanical and electrical ones, may promote biological responses, we propose this artificial scaffold as a prototype to exploit the physics governing spinal regenerative plasticity.File | Dimensione | Formato | |
---|---|---|---|
PNAS.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.78 MB
Formato
Adobe PDF
|
1.78 MB | Adobe PDF | Visualizza/Apri |
pnas.2005708117.sapp.pdf
accesso aperto
Descrizione: Supplementary Information
Tipologia:
Altro materiale allegato
Licenza:
Non specificato
Dimensione
5.06 MB
Formato
Adobe PDF
|
5.06 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.