An approximate description of cyclic evolution of mixed states ρ (density matrices) is discussed in terms of vectors in R ⊗R (or Hilbert-Schmidt operators in R). It combines the decomposition ambiguity of ρ into pure states with the usual Berry phase for state vectors. The resulting non-Abelian quantum holonomy may be observable if the superposition principle is extended to R ⊗R © 1991 Società Italiana di Fisica.

A superposition principle for mixed states?

Dabrowski, Ludwik
1991-01-01

Abstract

An approximate description of cyclic evolution of mixed states ρ (density matrices) is discussed in terms of vectors in R ⊗R (or Hilbert-Schmidt operators in R). It combines the decomposition ambiguity of ρ into pure states with the usual Berry phase for state vectors. The resulting non-Abelian quantum holonomy may be observable if the superposition principle is extended to R ⊗R © 1991 Società Italiana di Fisica.
1991
106
9
963
968
Dabrowski, Ludwik
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/11516
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact