In this note we prove that, if the cost function satisfies some necessary structural conditions and the densities are bounded away from zero and infinity, then strictly c-convex potentials arising in optimal transportation belong to W2,1+κloc for some κ>0. This generalizes some recents results concerning the regularity of strictly convex Alexandrov solutions of the Monge-Amp\`ere equation with right hand side bounded away from zero and infinity.
Sobolev Regularity for Monge-Ampere Type Equations
De Philippis, Guido;
2013-01-01
Abstract
In this note we prove that, if the cost function satisfies some necessary structural conditions and the densities are bounded away from zero and infinity, then strictly c-convex potentials arising in optimal transportation belong to W2,1+κloc for some κ>0. This generalizes some recents results concerning the regularity of strictly convex Alexandrov solutions of the Monge-Amp\`ere equation with right hand side bounded away from zero and infinity.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2013_Sobolev Regularity For Monge-Ampe?re Type Equations.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
220.7 kB
Formato
Adobe PDF
|
220.7 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.