In this note we prove that, if the cost function satisfies some necessary structural conditions and the densities are bounded away from zero and infinity, then strictly c-convex potentials arising in optimal transportation belong to W2,1+κloc for some κ>0. This generalizes some recents results concerning the regularity of strictly convex Alexandrov solutions of the Monge-Amp\`ere equation with right hand side bounded away from zero and infinity.

Sobolev Regularity for Monge-Ampere Type Equations

De Philippis, Guido;
2013-01-01

Abstract

In this note we prove that, if the cost function satisfies some necessary structural conditions and the densities are bounded away from zero and infinity, then strictly c-convex potentials arising in optimal transportation belong to W2,1+κloc for some κ>0. This generalizes some recents results concerning the regularity of strictly convex Alexandrov solutions of the Monge-Amp\`ere equation with right hand side bounded away from zero and infinity.
2013
45
3
1812
1824
10.1137/120898619
https://arxiv.org/abs/1211.2341
De Philippis, Guido; Figalli, A.
File in questo prodotto:
File Dimensione Formato  
2013_Sobolev Regularity For Monge-Ampe?re Type Equations.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 220.7 kB
Formato Adobe PDF
220.7 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/11532
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 8
social impact