We study the time evolution of the logarithmic negativity after a global quantum quench. In a 1+1-dimensional conformal invariant field theory, we consider the negativity between two intervals which can be either adjacent or disjoint. We show that the negativity follows the quasi-particle interpretation for the spreading of entanglement. We check and generalise our findings with a systematic analysis of the negativity after a quantum quench in the harmonic chain, highlighting two peculiar lattice effects: the late birth and the sudden death of entanglement.

Entanglement negativity after a global quantum quench / Coser, Andrea; Tonni, Erik; Calabrese, Pasquale. - In: JOURNAL OF STATISTICAL MECHANICS: THEORY AND EXPERIMENT. - ISSN 1742-5468. - 2014:12(2014), pp. 1-31. [10.1088/1742-5468/2014/12/P12017]

Entanglement negativity after a global quantum quench

Coser, Andrea;Tonni, Erik;Calabrese, Pasquale
2014-01-01

Abstract

We study the time evolution of the logarithmic negativity after a global quantum quench. In a 1+1-dimensional conformal invariant field theory, we consider the negativity between two intervals which can be either adjacent or disjoint. We show that the negativity follows the quasi-particle interpretation for the spreading of entanglement. We check and generalise our findings with a systematic analysis of the negativity after a quantum quench in the harmonic chain, highlighting two peculiar lattice effects: the late birth and the sudden death of entanglement.
2014
2014
12
1
31
P12017
https://doi.org/10.1088/1742-5468/2014/12/P12017
https://arxiv.org/abs/1410.0900
Coser, Andrea; Tonni, Erik; Calabrese, Pasquale
File in questo prodotto:
File Dimensione Formato  
Coser_2014_J._Stat._Mech._2014_P12017.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 2.54 MB
Formato Adobe PDF
2.54 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
postprint.pdf

Open Access dal 18/12/2015

Descrizione: Postprint
Tipologia: Documento in Post-print
Licenza: Non specificato
Dimensione 2.17 MB
Formato Adobe PDF
2.17 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/11550
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 143
  • ???jsp.display-item.citation.isi??? 129
social impact