We consider a class of non-quasi-convex frame indifferent energy densities that includes Ogden-type energy densities for nematic elastomers. For the corresponding geometrically linear problem, we provide an explicit minimizer of the energy functional satisfying a non-trivial boundary condition. Other attainment results, both for the nonlinear and the linearised model, are obtained by using the theory of convex integration introduced by Müller and Šverák in the context of crystalline solids.

Attainment results for nematic elastomers

Agostiniani, Virginia;Dal Maso, Gianni;De Simone, Antonio
2015-01-01

Abstract

We consider a class of non-quasi-convex frame indifferent energy densities that includes Ogden-type energy densities for nematic elastomers. For the corresponding geometrically linear problem, we provide an explicit minimizer of the energy functional satisfying a non-trivial boundary condition. Other attainment results, both for the nonlinear and the linearised model, are obtained by using the theory of convex integration introduced by Müller and Šverák in the context of crystalline solids.
2015
145
4
669
701
https://arxiv.org/abs/1310.1794
Agostiniani, Virginia; Dal Maso, Gianni; De Simone, Antonio
File in questo prodotto:
File Dimensione Formato  
Ago-DM-DeS-ProcEdinb-2015.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 312 kB
Formato Adobe PDF
312 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/11604
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact