Single-molecule force spectroscopy (SMFS) experiments pose the challenge of analyzing protein unfolding data (traces) coming from preparations with heterogeneous composition (e.g. where different proteins are present in the sample). An automatic procedure able to distinguish the unfolding patterns of the proteins is needed. Here, we introduce a data analysis pipeline able to recognize in such datasets traces with recurrent patterns (clusters).
Automatic classification of single-molecule force spectroscopy traces from heterogeneous samples / Ilieva, Nina I; Galvanetto, Nicola; Allegra, Michele; Brucale, Marco; Laio, Alessandro. - In: BIOINFORMATICS. - ISSN 1367-4803. - 36:20(2020), pp. 5014-5020. [10.1093/bioinformatics/btaa626]
Automatic classification of single-molecule force spectroscopy traces from heterogeneous samples
Galvanetto, Nicola;Allegra, Michele;Laio, Alessandro
2020-01-01
Abstract
Single-molecule force spectroscopy (SMFS) experiments pose the challenge of analyzing protein unfolding data (traces) coming from preparations with heterogeneous composition (e.g. where different proteins are present in the sample). An automatic procedure able to distinguish the unfolding patterns of the proteins is needed. Here, we introduce a data analysis pipeline able to recognize in such datasets traces with recurrent patterns (clusters).File | Dimensione | Formato | |
---|---|---|---|
btaa626.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
405.64 kB
Formato
Adobe PDF
|
405.64 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.