Single-molecule force spectroscopy (SMFS) experiments pose the challenge of analyzing protein unfolding data (traces) coming from preparations with heterogeneous composition (e.g. where different proteins are present in the sample). An automatic procedure able to distinguish the unfolding patterns of the proteins is needed. Here, we introduce a data analysis pipeline able to recognize in such datasets traces with recurrent patterns (clusters).

Automatic classification of single-molecule force spectroscopy traces from heterogeneous samples / Ilieva, Nina I; Galvanetto, Nicola; Allegra, Michele; Brucale, Marco; Laio, Alessandro. - In: BIOINFORMATICS. - ISSN 1367-4803. - 36:20(2020), pp. 5014-5020. [10.1093/bioinformatics/btaa626]

Automatic classification of single-molecule force spectroscopy traces from heterogeneous samples

Galvanetto, Nicola;Allegra, Michele;Laio, Alessandro
2020-01-01

Abstract

Single-molecule force spectroscopy (SMFS) experiments pose the challenge of analyzing protein unfolding data (traces) coming from preparations with heterogeneous composition (e.g. where different proteins are present in the sample). An automatic procedure able to distinguish the unfolding patterns of the proteins is needed. Here, we introduce a data analysis pipeline able to recognize in such datasets traces with recurrent patterns (clusters).
2020
36
20
5014
5020
Ilieva, Nina I; Galvanetto, Nicola; Allegra, Michele; Brucale, Marco; Laio, Alessandro
File in questo prodotto:
File Dimensione Formato  
btaa626.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 405.64 kB
Formato Adobe PDF
405.64 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/116137
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact