In recent years, the advent of the so-called silicon probes has made it possible to homogeneously sample spikes and local field potentials (LFPs) from a regular grid of cortical recording sites. In principle, this allows inferring the laminar location of the sites based on the spatiotemporal pattern of LFPs recorded along the probe, as in the well-known current source-density (CSD) analysis. This approach, however, has several limitations, since it relies on visual identification of landmark features (i.e., current sinks and sources) by human operators, features that can be absent from the CSD pattern if the probe does not span the whole cortical thickness, thus making manual labeling harder. Furthermore, as with any manual annotation procedure, the typical CSD-based workflow for laminar identification of recording sites is affected by subjective judgment undermining the consistency and reproducibility of results. To overcome these limitations, we developed an alternative approach, based on finding the optimal match between the LFPs recorded along a probe in a given experiment and a template LFP profile that was computed using 18 recording sessions, in which the depth of the recording sites had been recovered through histology. We show that this method can achieve an accuracy of 79 μm in recovering the cortical depth of recording sites and a 76% accuracy in inferring their laminar location. As such, our approach provides an alternative to CSD that, being fully automated, is less prone to the idiosyncrasies of subjective judgment and works reliably also for recordings spanning a limited cortical stretch. NEW & NOTEWORTHY Knowing the depth and laminar location of the microelectrodes used to record neuronal activity from the cerebral cortex is crucial to properly interpret the recorded patterns of neuronal responses. Here, we present an innovative approach that allows inferring such properties with high accuracy and in an automated way (i.e., without the need of visual inspection and manual annotation) from the evoked response potentials elicited by sensory (e.g., visual) stimuli.

A template-matching algorithm for laminar identification of cortical recording sites from evoked response potentials / Matteucci, G.; Riggi, M.; Zoccolan, D.. - In: JOURNAL OF NEUROPHYSIOLOGY. - ISSN 0022-3077. - 124:1(2020), pp. 102-114. [10.1152/jn.00033.2020]

A template-matching algorithm for laminar identification of cortical recording sites from evoked response potentials

Matteucci G.;Riggi M.;Zoccolan D.
2020-01-01

Abstract

In recent years, the advent of the so-called silicon probes has made it possible to homogeneously sample spikes and local field potentials (LFPs) from a regular grid of cortical recording sites. In principle, this allows inferring the laminar location of the sites based on the spatiotemporal pattern of LFPs recorded along the probe, as in the well-known current source-density (CSD) analysis. This approach, however, has several limitations, since it relies on visual identification of landmark features (i.e., current sinks and sources) by human operators, features that can be absent from the CSD pattern if the probe does not span the whole cortical thickness, thus making manual labeling harder. Furthermore, as with any manual annotation procedure, the typical CSD-based workflow for laminar identification of recording sites is affected by subjective judgment undermining the consistency and reproducibility of results. To overcome these limitations, we developed an alternative approach, based on finding the optimal match between the LFPs recorded along a probe in a given experiment and a template LFP profile that was computed using 18 recording sessions, in which the depth of the recording sites had been recovered through histology. We show that this method can achieve an accuracy of 79 μm in recovering the cortical depth of recording sites and a 76% accuracy in inferring their laminar location. As such, our approach provides an alternative to CSD that, being fully automated, is less prone to the idiosyncrasies of subjective judgment and works reliably also for recordings spanning a limited cortical stretch. NEW & NOTEWORTHY Knowing the depth and laminar location of the microelectrodes used to record neuronal activity from the cerebral cortex is crucial to properly interpret the recorded patterns of neuronal responses. Here, we present an innovative approach that allows inferring such properties with high accuracy and in an automated way (i.e., without the need of visual inspection and manual annotation) from the evoked response potentials elicited by sensory (e.g., visual) stimuli.
2020
124
1
102
114
Matteucci, G.; Riggi, M.; Zoccolan, D.
File in questo prodotto:
File Dimensione Formato  
749069v2.full.pdf

accesso aperto

Descrizione: pre-print dell'articolo principale
Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 495.71 kB
Formato Adobe PDF
495.71 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/116569
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact