Necrosis and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs) are secreted by several phytopathogenic microorganisms. They trigger necrosis in various eudicot plants upon binding to plant sphingolipid glycosylinositol phosphorylceramides (GIPC). Interestingly, HaNLP3 from the obligate biotroph oomycete Hyaloperonospora arabidopsidis does not induce necrosis. We determined the crystal structure of HaNLP3 and showed that it adopts the NLP fold. However, the conformations of the loops surrounding the GIPC headgroup-binding cavity differ from those of cytotoxic Pythium aphanidermatum NLPPya. Essential dynamics extracted from μs-long molecular dynamics (MD) simulations reveals a limited conformational plasticity of the GIPC-binding cavity in HaNLP3 relative to toxic NLPs. This likely precludes HaNLP3 binding to GIPCs, which is the underlying reason for the lack of toxicity. This study reveals that mutations at key protein regions cause a switch between nontoxic and toxic phenotypes within the same protein scaffold. Altogether, these data provide evidence that protein flexibility is a distinguishing trait of toxic NLPs and highlight structural determinants for a potential functional diversification of non-toxic NLPs utilized by biotrophic plant pathogens.

Molecular basis for functional diversity among microbial Nep1-like proteins / Lenarcic, T.; Pirc, K.; Hodnik, V.; Albert, I.; Borisek, J.; Magistrato, A.; Nurnberger, T.; Podobnik, M.; Anderluh, G.. - In: PLOS PATHOGENS. - ISSN 1553-7366. - 15:9(2019), pp. 1-23. [10.1371/journal.ppat.1007951]

Molecular basis for functional diversity among microbial Nep1-like proteins

Magistrato A.;
2019-01-01

Abstract

Necrosis and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs) are secreted by several phytopathogenic microorganisms. They trigger necrosis in various eudicot plants upon binding to plant sphingolipid glycosylinositol phosphorylceramides (GIPC). Interestingly, HaNLP3 from the obligate biotroph oomycete Hyaloperonospora arabidopsidis does not induce necrosis. We determined the crystal structure of HaNLP3 and showed that it adopts the NLP fold. However, the conformations of the loops surrounding the GIPC headgroup-binding cavity differ from those of cytotoxic Pythium aphanidermatum NLPPya. Essential dynamics extracted from μs-long molecular dynamics (MD) simulations reveals a limited conformational plasticity of the GIPC-binding cavity in HaNLP3 relative to toxic NLPs. This likely precludes HaNLP3 binding to GIPCs, which is the underlying reason for the lack of toxicity. This study reveals that mutations at key protein regions cause a switch between nontoxic and toxic phenotypes within the same protein scaffold. Altogether, these data provide evidence that protein flexibility is a distinguishing trait of toxic NLPs and highlight structural determinants for a potential functional diversification of non-toxic NLPs utilized by biotrophic plant pathogens.
2019
15
9
1
23
e1007951
Lenarcic, T.; Pirc, K.; Hodnik, V.; Albert, I.; Borisek, J.; Magistrato, A.; Nurnberger, T.; Podobnik, M.; Anderluh, G.
File in questo prodotto:
File Dimensione Formato  
ppat.1007951.pdf

accesso aperto

Descrizione: DOAJ Open Access
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.01 MB
Formato Adobe PDF
2.01 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/116680
Citazioni
  • ???jsp.display-item.citation.pmc??? 16
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 20
social impact