We investigate the reconstruction capabilities of the dark matter mass and spin-independent cross section from future ton-scale direct detection experiments using germanium, xenon, or argon as targets. Adopting realistic values for the exposure, energy threshold, and resolution of dark matter experiments which will come online within 5 to 10 years, the degree of complementarity between different targets is quantified. We investigate how the uncertainty in the astrophysical parameters controlling the local dark matter density and velocity distribution affects the reconstruction. For a 50GeV WIMP, astrophysical uncertainties degrade the accuracy in the mass reconstruction by up to a factor of ∼4 for xenon and germanium, compared to the case when astrophysical quantities are fixed. However, the combination of argon, germanium, and xenon data increases the constraining power by a factor of ∼2 compared to germanium or xenon alone. We show that future direct detection experiments can achieve self-calibration of some astrophysical parameters, and they will be able to constrain the WIMP mass with only very weak external astrophysical constraints. © 2011 American Physical Society.

Complementarity of dark matter direct detection targets / Pato, M.; Baudis, L.; Bertone, G.; Ruiz De Austri, R.; Strigari, L. E.; Trotta, R.. - In: PHYSICAL REVIEW D, PARTICLES, FIELDS, GRAVITATION, AND COSMOLOGY. - ISSN 1550-7998. - 83:8(2011), pp. 1-11. [10.1103/PhysRevD.83.083505]

Complementarity of dark matter direct detection targets

Trotta R.
2011-01-01

Abstract

We investigate the reconstruction capabilities of the dark matter mass and spin-independent cross section from future ton-scale direct detection experiments using germanium, xenon, or argon as targets. Adopting realistic values for the exposure, energy threshold, and resolution of dark matter experiments which will come online within 5 to 10 years, the degree of complementarity between different targets is quantified. We investigate how the uncertainty in the astrophysical parameters controlling the local dark matter density and velocity distribution affects the reconstruction. For a 50GeV WIMP, astrophysical uncertainties degrade the accuracy in the mass reconstruction by up to a factor of ∼4 for xenon and germanium, compared to the case when astrophysical quantities are fixed. However, the combination of argon, germanium, and xenon data increases the constraining power by a factor of ∼2 compared to germanium or xenon alone. We show that future direct detection experiments can achieve self-calibration of some astrophysical parameters, and they will be able to constrain the WIMP mass with only very weak external astrophysical constraints. © 2011 American Physical Society.
2011
83
8
1
11
083505
https://arxiv.org/abs/1012.3458
Pato, M.; Baudis, L.; Bertone, G.; Ruiz De Austri, R.; Strigari, L. E.; Trotta, R.
File in questo prodotto:
File Dimensione Formato  
PR_D83_083505_2011.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 423.84 kB
Formato Adobe PDF
423.84 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/116921
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 95
  • ???jsp.display-item.citation.isi??? 91
social impact