We show that for very general hypersurfaces in odd-dimensional simplicial projective toric varieties satisfying an effective combinatorial property the Hodge conjecture holds. This gives a connection between the Oda conjecture and Hodge conjecture. We also give an explicit criterion which depends on the degree for very general hypersurfaces for the combinatorial condition to be verified.

On the Hodge conjecture for hypersurfaces in toric varieties / Bruzzo, Ugo; Grassi, Antonella. - In: COMMUNICATIONS IN ANALYSIS AND GEOMETRY. - ISSN 1019-8385. - 28:8(2020), pp. 1773-1786. [10.4310/CAG.2020.V28.N8.A1]

On the Hodge conjecture for hypersurfaces in toric varieties

Ugo Bruzzo
;
2020-01-01

Abstract

We show that for very general hypersurfaces in odd-dimensional simplicial projective toric varieties satisfying an effective combinatorial property the Hodge conjecture holds. This gives a connection between the Oda conjecture and Hodge conjecture. We also give an explicit criterion which depends on the degree for very general hypersurfaces for the combinatorial condition to be verified.
2020
28
8
1773
1786
Bruzzo, Ugo; Grassi, Antonella
File in questo prodotto:
File Dimensione Formato  
CAG_28_08_A01.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 154.73 kB
Formato Adobe PDF
154.73 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/117024
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact