A deformed relativistic kinematics can be understood within a geometrical framework through a maximally symmetric momentum space. However, when considering this kind of approach, usually one works in a flat spacetime and in a curved momentum space. In this paper, we will discuss a possible generalization to take into account both curvatures and some possible observable effects. We will first explain how to construct a metric in the cotangent bundle in order to have a curved spacetime with a nontrivial geometry in momentum space and the relationship with an action in phase space characterized by a deformed Casimir. Then, we will study within this proposal two different space-time geometries. In the Friedmann-Robertson-Walker universe, we will see the modifications in the geodesics (redshift, luminosity distance, and geodesic expansion) due to a momentum dependence of the metric in the cotangent bundle. Also, we will see that when the spacetime considered is a Schwarzschild black hole, one still has a common horizon for particles with different energies, differently from a Lorentz invariance violation case. However, the surface gravity computed as the peeling off of null geodesics is energy dependent.
Phenomenological consequences of a geometry in the cotangent bundle / Relancio, J. J.; Liberati, S.. - In: PHYSICAL REVIEW D. - ISSN 2470-0010. - 101:6(2020), pp. 1-15. [10.1103/PhysRevD.101.064062]
Phenomenological consequences of a geometry in the cotangent bundle
Liberati S.
2020-01-01
Abstract
A deformed relativistic kinematics can be understood within a geometrical framework through a maximally symmetric momentum space. However, when considering this kind of approach, usually one works in a flat spacetime and in a curved momentum space. In this paper, we will discuss a possible generalization to take into account both curvatures and some possible observable effects. We will first explain how to construct a metric in the cotangent bundle in order to have a curved spacetime with a nontrivial geometry in momentum space and the relationship with an action in phase space characterized by a deformed Casimir. Then, we will study within this proposal two different space-time geometries. In the Friedmann-Robertson-Walker universe, we will see the modifications in the geodesics (redshift, luminosity distance, and geodesic expansion) due to a momentum dependence of the metric in the cotangent bundle. Also, we will see that when the spacetime considered is a Schwarzschild black hole, one still has a common horizon for particles with different energies, differently from a Lorentz invariance violation case. However, the surface gravity computed as the peeling off of null geodesics is energy dependent.File | Dimensione | Formato | |
---|---|---|---|
PhysRevD.101.064062.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
342.47 kB
Formato
Adobe PDF
|
342.47 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.