The presence of incommensurate spin structures in the half-filled triangular Hubbard model, where frustration leads to a competition among different magnetic phases, is investigated using both the slave-boson technique, and exact diagonalization of finite clusters. We also investigate the metal-insulator transition which, due to the lack of perfect nesting, takes place at a finite value of U. Within the slave-boson approach. as the interaction grows the paramagnetic metal turns into a metallic phase with incommensurate spiral ordering. Increasing further the interaction, a linear spin-density-wave is stabilized, and finally for strong coupling the latter phase undergoes a first-order transition towards an antiferromagnetic insulator. No trace of the intermediate phases is instead found in the exact diagonalization results. RI Capone, Massimo/A-7762-2008
Commensurate versus incommensurate spin-ordering in the triangular Hubbard model
Capone, Massimo;Becca, Federico
2000-01-01
Abstract
The presence of incommensurate spin structures in the half-filled triangular Hubbard model, where frustration leads to a competition among different magnetic phases, is investigated using both the slave-boson technique, and exact diagonalization of finite clusters. We also investigate the metal-insulator transition which, due to the lack of perfect nesting, takes place at a finite value of U. Within the slave-boson approach. as the interaction grows the paramagnetic metal turns into a metallic phase with incommensurate spiral ordering. Increasing further the interaction, a linear spin-density-wave is stabilized, and finally for strong coupling the latter phase undergoes a first-order transition towards an antiferromagnetic insulator. No trace of the intermediate phases is instead found in the exact diagonalization results. RI Capone, Massimo/A-7762-2008I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.