The entanglement evolution after a quantum quench became one of the tools to distinguish integrable versus chaotic (non-integrable) quantum many-body dynamics. Following this line of thoughts, here we propose that the revivals in the entanglement entropy provide a finite-size diagnostic benchmark for the purpose. Indeed, integrable models display periodic revivals manifested in a dip in the block entanglement entropy in a finite system. On the other hand, in chaotic systems, initial correlations get dispersed in the global degrees of freedom (information scrambling) and such a dip is suppressed. We show that while for integrable systems the height of the dip of the entanglement of an interval of fixed length decays as a power law with the total system size, upon breaking integrability a much faster decay is observed, signalling strong scrambling. Our results are checked by exact numerical techniques in free-fermion and free-boson theories, and by time-dependent density matrix renormalisation group in interacting integrable and chaotic models.
Entanglement revivals as a probe of scrambling in finite quantum systems / Modak, R.; Alba, V.; Calabrese, P.. - In: JOURNAL OF STATISTICAL MECHANICS: THEORY AND EXPERIMENT. - ISSN 1742-5468. - 2020:8(2020), pp. 1-29. [10.1088/1742-5468/aba9d9]
Entanglement revivals as a probe of scrambling in finite quantum systems
Modak, R.;Alba, V.;Calabrese, P.
2020-01-01
Abstract
The entanglement evolution after a quantum quench became one of the tools to distinguish integrable versus chaotic (non-integrable) quantum many-body dynamics. Following this line of thoughts, here we propose that the revivals in the entanglement entropy provide a finite-size diagnostic benchmark for the purpose. Indeed, integrable models display periodic revivals manifested in a dip in the block entanglement entropy in a finite system. On the other hand, in chaotic systems, initial correlations get dispersed in the global degrees of freedom (information scrambling) and such a dip is suppressed. We show that while for integrable systems the height of the dip of the entanglement of an interval of fixed length decays as a power law with the total system size, upon breaking integrability a much faster decay is observed, signalling strong scrambling. Our results are checked by exact numerical techniques in free-fermion and free-boson theories, and by time-dependent density matrix renormalisation group in interacting integrable and chaotic models.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.