Recurrent successions of genomic changes, both within and between patients, reflect repeated evolutionary processes that are valuable for the anticipation of cancer progression. Multi-region sequencing allows the temporal order of some genomic changes in a tumor to be inferred, but the robust identification of repeated evolution across patients remains a challenge. We developed a machine-learning method based on transfer learning that allowed us to overcome the stochastic effects of cancer evolution and noise in data and identified hidden evolutionary patterns in cancer cohorts. When applied to multi-region sequencing datasets from lung, breast, renal, and colorectal cancer (768 samples from 178 patients), our method detected repeated evolutionary trajectories in subgroups of patients, which were reproduced in single-sample cohorts (n = 2,935). Our method provides a means of classifying patients on the basis of how their tumor evolved, with implications for the anticipation of disease progression.
Detecting repeated cancer evolution from multiregion tumor sequencing data / Caravagna, G; Giarratano, Y; Ramazzotti, D; Tomlinson, I; Graham, Ta; Sanguinetti, G; Sottoriva, A. - In: NATURE METHODS. - ISSN 1548-7091. - 15:9(2018), pp. 707-714. [10.1038/s41592-018-0108-x]
Detecting repeated cancer evolution from multiregion tumor sequencing data
Sanguinetti G
;
2018-01-01
Abstract
Recurrent successions of genomic changes, both within and between patients, reflect repeated evolutionary processes that are valuable for the anticipation of cancer progression. Multi-region sequencing allows the temporal order of some genomic changes in a tumor to be inferred, but the robust identification of repeated evolution across patients remains a challenge. We developed a machine-learning method based on transfer learning that allowed us to overcome the stochastic effects of cancer evolution and noise in data and identified hidden evolutionary patterns in cancer cohorts. When applied to multi-region sequencing datasets from lung, breast, renal, and colorectal cancer (768 samples from 178 patients), our method detected repeated evolutionary trajectories in subgroups of patients, which were reproduced in single-sample cohorts (n = 2,935). Our method provides a means of classifying patients on the basis of how their tumor evolved, with implications for the anticipation of disease progression.File | Dimensione | Formato | |
---|---|---|---|
s41592-018-0108-x.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
3.27 MB
Formato
Adobe PDF
|
3.27 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.