We prove the first bifurcation result of time quasi-periodic traveling waves solutions for space periodic water waves with vorticity. In particular we prove existence of small amplitude time quasi-periodic solutions of the gravity-capillary water waves equations with constant vorticity, for a bidimensional fluid over a flat bottom delimited by a space-periodic free interface. These quasi-periodic solutions exist for all the values of depth, gravity and vorticity, and restricting the surface tension to a Borel set of asymptotically full Lebesgue measure.

Traveling quasi-periodic water waves with constant vorticity / Berti, Massimiliano; Franzoi, Luca; Maspero, Alberto. - In: ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS. - ISSN 1432-0673. - 240:1(2021), pp. 99-202. [10.1007/s00205-021-01607-w]

Traveling quasi-periodic water waves with constant vorticity

Massimiliano Berti;Luca Franzoi;Alberto Maspero
2021-01-01

Abstract

We prove the first bifurcation result of time quasi-periodic traveling waves solutions for space periodic water waves with vorticity. In particular we prove existence of small amplitude time quasi-periodic solutions of the gravity-capillary water waves equations with constant vorticity, for a bidimensional fluid over a flat bottom delimited by a space-periodic free interface. These quasi-periodic solutions exist for all the values of depth, gravity and vorticity, and restricting the surface tension to a Borel set of asymptotically full Lebesgue measure.
2021
240
1
99
202
http://arxiv.org/abs/2004.08905v1
Berti, Massimiliano; Franzoi, Luca; Maspero, Alberto
File in questo prodotto:
File Dimensione Formato  
Berti Franzoi Maspero.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.08 MB
Formato Adobe PDF
1.08 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/117393
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 24
social impact