We prove the first bifurcation result of time quasi-periodic traveling waves solutions for space periodic water waves with vorticity. In particular we prove existence of small amplitude time quasi-periodic solutions of the gravity-capillary water waves equations with constant vorticity, for a bidimensional fluid over a flat bottom delimited by a space-periodic free interface. These quasi-periodic solutions exist for all the values of depth, gravity and vorticity, and restricting the surface tension to a Borel set of asymptotically full Lebesgue measure.
Traveling quasi-periodic water waves with constant vorticity / Berti, Massimiliano; Franzoi, Luca; Maspero, Alberto. - In: ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS. - ISSN 1432-0673. - 240:1(2021), pp. 99-202. [10.1007/s00205-021-01607-w]
Traveling quasi-periodic water waves with constant vorticity
Massimiliano Berti;Luca Franzoi;Alberto Maspero
2021-01-01
Abstract
We prove the first bifurcation result of time quasi-periodic traveling waves solutions for space periodic water waves with vorticity. In particular we prove existence of small amplitude time quasi-periodic solutions of the gravity-capillary water waves equations with constant vorticity, for a bidimensional fluid over a flat bottom delimited by a space-periodic free interface. These quasi-periodic solutions exist for all the values of depth, gravity and vorticity, and restricting the surface tension to a Borel set of asymptotically full Lebesgue measure.File | Dimensione | Formato | |
---|---|---|---|
Berti Franzoi Maspero.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.08 MB
Formato
Adobe PDF
|
1.08 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.