We prove the existence of Cantor families of small amplitude, linearly stable, quasi-periodic solutions of quasi-linear (also called strongly nonlinear) autonomous Hamil- tonian differentiable perturbations of the mKdV equation. The proof is based on a weak version of the Birkhoff normal form algorithm and a nonlinear Nash–Moser iteration. The analysis of the linearized operators at each step of the iteration is achieved by pseudo- differential operator techniques and a linear KAM reducibility scheme. © 2016 Unione Matematica Italiana.
KAM for autonomous quasi-linear perturbations of mKdV / Baldi, P.; Berti, Massimiliano; Montalto, Riccardo. - In: BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA. - ISSN 1972-6724. - 9:2(2016), pp. 143-188. [10.1007/s40574-016-0065-1]
KAM for autonomous quasi-linear perturbations of mKdV
Berti, Massimiliano;Montalto, Riccardo
2016-01-01
Abstract
We prove the existence of Cantor families of small amplitude, linearly stable, quasi-periodic solutions of quasi-linear (also called strongly nonlinear) autonomous Hamil- tonian differentiable perturbations of the mKdV equation. The proof is based on a weak version of the Birkhoff normal form algorithm and a nonlinear Nash–Moser iteration. The analysis of the linearized operators at each step of the iteration is achieved by pseudo- differential operator techniques and a linear KAM reducibility scheme. © 2016 Unione Matematica Italiana.File | Dimensione | Formato | |
---|---|---|---|
2016 Baldi.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
1.06 MB
Formato
Adobe PDF
|
1.06 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.