We study the Dirichlet problem for Hamilton–Jacobi equations of the form (Formula presented.), without continuity assumptions on the hamiltonian H with respect to the variable x. We find a class of Caratheodory functions H for which the problem admits a (maximal) generalized solution which, in the continuous case, coincides with the classical viscosity solution. © 2016, Università degli Studi di Ferrara.
Maximal generalized solutions of Hamilton–Jacobi equations / Zagatti, Sandro. - In: ANNALI DELL'UNIVERSITÀ DI FERRARA. SEZIONE 7: SCIENZE MATEMATICHE. - ISSN 0430-3202. - 62:2(2016), pp. 373-398. [10.1007/s11565-016-0252-0]
Maximal generalized solutions of Hamilton–Jacobi equations
Zagatti, Sandro
2016-01-01
Abstract
We study the Dirichlet problem for Hamilton–Jacobi equations of the form (Formula presented.), without continuity assumptions on the hamiltonian H with respect to the variable x. We find a class of Caratheodory functions H for which the problem admits a (maximal) generalized solution which, in the continuous case, coincides with the classical viscosity solution. © 2016, Università degli Studi di Ferrara.File | Dimensione | Formato | |
---|---|---|---|
2016 Zagatti.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
586.35 kB
Formato
Adobe PDF
|
586.35 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.