In this work we present a Reduced Basis VMS-Smagorinsky Boussinesq model, applied to natural convection problems in a variable height cavity, in which the buoyancy forces are involved. We take into account in this problem both physical and geometrical parametrizations, considering the Rayleigh number as a parameter, so as the height of the cavity. We perform an Empirical Interpolation Method to approximate the sub-grid eddy viscosity term that lets us obtain an affine decomposition with respect to the parameters. We construct an a posteriori error estimator, based upon the Brezzi–Rappaz–Raviart theory, used in the greedy algorithm for the selection of the basis functions. Finally we present several numerical tests for different parameter configuration.
Certified Reduced Basis VMS-Smagorinsky model for natural convection flow in a cavity with variable height / Ballarin, F.; Chacon Rebollo, T.; Delgado Avila, E.; Gomez Marmol, M.; Rozza, G.. - In: COMPUTERS & MATHEMATICS WITH APPLICATIONS. - ISSN 0898-1221. - 80:5(2020), pp. 973-989. [10.1016/j.camwa.2020.05.013]
Certified Reduced Basis VMS-Smagorinsky model for natural convection flow in a cavity with variable height
Ballarin, F.;Delgado Avila, E.
;Rozza, G.
2020-01-01
Abstract
In this work we present a Reduced Basis VMS-Smagorinsky Boussinesq model, applied to natural convection problems in a variable height cavity, in which the buoyancy forces are involved. We take into account in this problem both physical and geometrical parametrizations, considering the Rayleigh number as a parameter, so as the height of the cavity. We perform an Empirical Interpolation Method to approximate the sub-grid eddy viscosity term that lets us obtain an affine decomposition with respect to the parameters. We construct an a posteriori error estimator, based upon the Brezzi–Rappaz–Raviart theory, used in the greedy algorithm for the selection of the basis functions. Finally we present several numerical tests for different parameter configuration.File | Dimensione | Formato | |
---|---|---|---|
1902.05729.pdf
non disponibili
Descrizione: postprint
Tipologia:
Documento in Post-print
Licenza:
Non specificato
Dimensione
3.13 MB
Formato
Adobe PDF
|
3.13 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1-s2.0-S0898122120302170-main.pdf
non disponibili
Descrizione: pdf editoriale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
1.7 MB
Formato
Adobe PDF
|
1.7 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.