Hierarchical Model reduction and Proper Generalized Decomposition both exploit separation of variables to perform a model reduction. After setting the basics, we exemplify these techniques on some standard elliptic problems to highlight pros and cons of the two procedures, both from a methodological and a numerical viewpoint.
Model reduction by separation of variables: A comparison between hierarchical model reduction and proper generalized decomposition / Perotto, S.; Carlino, M. G.; Ballarin, F.. - 134:(2020), pp. 61-77. [10.1007/978-3-030-39647-3_4]
Model reduction by separation of variables: A comparison between hierarchical model reduction and proper generalized decomposition
Perotto, S.
;Ballarin, F.
2020-01-01
Abstract
Hierarchical Model reduction and Proper Generalized Decomposition both exploit separation of variables to perform a model reduction. After setting the basics, we exemplify these techniques on some standard elliptic problems to highlight pros and cons of the two procedures, both from a methodological and a numerical viewpoint.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1811.11486.pdf
accesso aperto
Descrizione: preprint
Tipologia:
Documento in Pre-print
Licenza:
Non specificato
Dimensione
871.83 kB
Formato
Adobe PDF
|
871.83 kB | Adobe PDF | Visualizza/Apri |
978-3-030-39647-3.pdf
accesso aperto
Descrizione: pdf editoriale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
20.97 MB
Formato
Adobe PDF
|
20.97 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.