LiOsO3 has been recently identified as the first unambiguous "ferroelectric metal," experimentally realizing a prediction by Anderson and Blount [Phys. Rev. Lett. 14, 217 (1965)PRLTAO0031-900710.1103/PhysRevLett.14.217]. In this Rapid Communication, we investigate the metallic state in LiOsO3 by means of infrared spectroscopy supplemented by density functional theory and dynamical mean-field theory calculations. Our measurements and theoretical calculations clearly show that LiOsO3 is a very bad metal with a small quasiparticle weight, close to a Mott-Hubbard localization transition. The agreement between experiments and theory allows us to ascribe all the relevant features in the optical conductivity to strong electron-electron correlations within the t2g manifold of the osmium atoms.
Electronic correlations in the ferroelectric metallic state of LiOsO3
Capone, Massimo;
2016-01-01
Abstract
LiOsO3 has been recently identified as the first unambiguous "ferroelectric metal," experimentally realizing a prediction by Anderson and Blount [Phys. Rev. Lett. 14, 217 (1965)PRLTAO0031-900710.1103/PhysRevLett.14.217]. In this Rapid Communication, we investigate the metallic state in LiOsO3 by means of infrared spectroscopy supplemented by density functional theory and dynamical mean-field theory calculations. Our measurements and theoretical calculations clearly show that LiOsO3 is a very bad metal with a small quasiparticle weight, close to a Mott-Hubbard localization transition. The agreement between experiments and theory allows us to ascribe all the relevant features in the optical conductivity to strong electron-electron correlations within the t2g manifold of the osmium atoms.File | Dimensione | Formato | |
---|---|---|---|
PhysRevB.93.161113.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
388.05 kB
Formato
Adobe PDF
|
388.05 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.