A constructive and improved version of the proof that there exist a continuous map that solves the convexified problem is presented. A Lipschitz continuous map is analyzed such that a map vector minimizes the functional at each vector satisfying Cellina's condition of existence of minimum. This map is explicitly given by a direct constructive algorithm.

A Lipschitz selection from the set of minimizers of a nonconvex functional of the gradient / Dal Maso, G; Goncharov, Vv; Ornelas, A. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 37:6(1999), pp. 707-717. [10.1016/S0362-546X(98)00067-4]

A Lipschitz selection from the set of minimizers of a nonconvex functional of the gradient

Dal Maso, G;
1999-01-01

Abstract

A constructive and improved version of the proof that there exist a continuous map that solves the convexified problem is presented. A Lipschitz continuous map is analyzed such that a map vector minimizes the functional at each vector satisfying Cellina's condition of existence of minimum. This map is explicitly given by a direct constructive algorithm.
1999
37
6
707
717
Dal Maso, G; Goncharov, Vv; Ornelas, A
File in questo prodotto:
File Dimensione Formato  
DM-Gon-Orn-NLA1999.pdf

non disponibili

Licenza: Non specificato
Dimensione 111.09 kB
Formato Adobe PDF
111.09 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/11862
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact