In this work we propose and analyze a weighted reduced basis method to solve elliptic partial differential equations (PDEs) with random input data. The PDEs are first transformed into a weighted parametric elliptic problem depending on a finite number of parameters. Distinctive importance of the solution at different values of the parameters is taken into account by assigning different weights to the samples in the greedy sampling procedure. A priori convergence analysis is carried out by constructive approximation of the exact solution with respect to the weighted parameters. Numerical examples are provided for the assessment of the advantages of the proposed method over the reduced basis method and the stochastic collocation method in both univariate and multivariate stochastic problems. © 2013 Society for Industrial and Applied Mathematics.
A weighted reduced basis method for elliptic partial differential equations with random input data / Chen, P; Quarteroni, A; Rozza, Gianluigi. - In: SIAM JOURNAL ON NUMERICAL ANALYSIS. - ISSN 0036-1429. - 51:6(2013), pp. 3163-3185. [10.1137/130905253]
A weighted reduced basis method for elliptic partial differential equations with random input data
Rozza, Gianluigi
2013-01-01
Abstract
In this work we propose and analyze a weighted reduced basis method to solve elliptic partial differential equations (PDEs) with random input data. The PDEs are first transformed into a weighted parametric elliptic problem depending on a finite number of parameters. Distinctive importance of the solution at different values of the parameters is taken into account by assigning different weights to the samples in the greedy sampling procedure. A priori convergence analysis is carried out by constructive approximation of the exact solution with respect to the weighted parameters. Numerical examples are provided for the assessment of the advantages of the proposed method over the reduced basis method and the stochastic collocation method in both univariate and multivariate stochastic problems. © 2013 Society for Industrial and Applied Mathematics.File | Dimensione | Formato | |
---|---|---|---|
130905253.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
339.12 kB
Formato
Adobe PDF
|
339.12 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.