We investigate the structure of solutions of conservation laws with discontinuous flux under quite general assumption on the flux. We show that any entropy solution admits traces on the discontinuity set of the coefficients and we use this to prove the validity of a generalized Kato inequality for any pair of solutions. Applications to uniqueness of solutions are then given. © 2016, Springer-Verlag Berlin Heidelberg.

Structure of Solutions of Multidimensional Conservation Laws with Discontinuous Flux and Applications to Uniqueness

De Philippis, Guido;
2016-01-01

Abstract

We investigate the structure of solutions of conservation laws with discontinuous flux under quite general assumption on the flux. We show that any entropy solution admits traces on the discontinuity set of the coefficients and we use this to prove the validity of a generalized Kato inequality for any pair of solutions. Applications to uniqueness of solutions are then given. © 2016, Springer-Verlag Berlin Heidelberg.
2016
221
2
961
985
https://arxiv.org/abs/1509.08273v2
http://cdsads.u-strasbg.fr/abs/2016ArRMA.221..961C
Crasta, G.; De Cicco, V.; De Philippis, Guido; Ghiraldin, F.
File in questo prodotto:
File Dimensione Formato  
2016_ Structure of Solutions of Multidimensional Conservation Laws with Discontinuous Flux and Applications to Uniqueness.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 738.04 kB
Formato Adobe PDF
738.04 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/11884
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 18
social impact