We employ the exponential parametrization of the metric and a “physical” gauge fixing procedure to write a functional flow equation for the gravitational effective average action in an f(R) truncation. The background metric is a four-sphere and the coarse-graining procedure contains three free parameters. We look for scaling solutions, i.e. non-Gaussian fixed points for the function f. For a discrete set of values of the parameters, we find simple global solutions of quadratic polynomial form. For other values, global solutions can be found numerically. Such solutions can be extended in certain regions of parameter space and have two relevant directions. We discuss the merits and the shortcomings of this procedure. © 2016, The Author(s).

Renormalization group equation and scaling solutions for f(R) gravity in exponential parametrization

Percacci, Roberto;
2016-01-01

Abstract

We employ the exponential parametrization of the metric and a “physical” gauge fixing procedure to write a functional flow equation for the gravitational effective average action in an f(R) truncation. The background metric is a four-sphere and the coarse-graining procedure contains three free parameters. We look for scaling solutions, i.e. non-Gaussian fixed points for the function f. For a discrete set of values of the parameters, we find simple global solutions of quadratic polynomial form. For other values, global solutions can be found numerically. Such solutions can be extended in certain regions of parameter space and have two relevant directions. We discuss the merits and the shortcomings of this procedure. © 2016, The Author(s).
2016
76
2
1
18
46
10.1140/epjc/s10052-016-3895-1
https://arxiv.org/abs/1511.09393
http://inspirehep.net/record/1407206
http://cdsads.u-strasbg.fr/abs/2016EPJC...76...46O
Ohta, N.; Percacci, Roberto; Vacca, G. P.
File in questo prodotto:
File Dimensione Formato  
art%3A10.1140%2Fepjc%2Fs10052-016-3895-1.pdf

accesso aperto

Descrizione: Open Access article
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 784.7 kB
Formato Adobe PDF
784.7 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/11895
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 78
  • ???jsp.display-item.citation.isi??? 81
social impact