For any locally free coherent sheaf on a fixed smooth projective curve, we study the class, in the Grothendieck ring of varieties, of the Quot scheme that parametrizes zero-dimensional quotients of the sheaf. We prove that this class depends only on the rank of the sheaf and on the length of the quotients. As an application, we obtain an explicit formula that expresses it in terms of the symmetric products of the curve.

On the motive of Quot schemes of zero-dimensional quotients on a curve / Bagnarol, M.; Fantechi, B.; Perroni, F.. - In: NEW YORK JOURNAL OF MATHEMATICS. - ISSN 1076-9803. - 26:(2020), pp. 138-148.

On the motive of Quot schemes of zero-dimensional quotients on a curve

Bagnarol, M.;Fantechi, B.;Perroni, F.
2020-01-01

Abstract

For any locally free coherent sheaf on a fixed smooth projective curve, we study the class, in the Grothendieck ring of varieties, of the Quot scheme that parametrizes zero-dimensional quotients of the sheaf. We prove that this class depends only on the rank of the sheaf and on the length of the quotients. As an application, we obtain an explicit formula that expresses it in terms of the symmetric products of the curve.
2020
26
138
148
http://nyjm.albany.edu/j/2020/26-7v.pdf
https://arxiv.org/abs/1907.00826
Bagnarol, M.; Fantechi, B.; Perroni, F.
File in questo prodotto:
File Dimensione Formato  
Bagnarol_Fantechi_Perroni.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 589.76 kB
Formato Adobe PDF
589.76 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/119019
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact