We study the lower semicontinuity of some free discontinuity functionals with linear growth defined on the space of functions with bounded deformation. The volume term is convex and depends only on the Euclidean norm of the symmetrized gradient. We introduce a suitable class of surface terms, which make the functional lower semicontinuous with respect to L1 convergence. © 2017 by De Gruyter.

Lower semicontinuity of a class of integral functionals on the space of functions of bounded deformation / Dal Maso, Gianni; Orlando, Gianluca; Toader, Rodica. - In: ADVANCES IN CALCULUS OF VARIATIONS. - ISSN 1864-8258. - 10:2(2017), pp. 183-207. [10.1515/acv-2015-0036]

Lower semicontinuity of a class of integral functionals on the space of functions of bounded deformation

Dal Maso, Gianni;Orlando, Gianluca;Toader, Rodica
2017-01-01

Abstract

We study the lower semicontinuity of some free discontinuity functionals with linear growth defined on the space of functions with bounded deformation. The volume term is convex and depends only on the Euclidean norm of the symmetrized gradient. We introduce a suitable class of surface terms, which make the functional lower semicontinuous with respect to L1 convergence. © 2017 by De Gruyter.
2017
10
2
183
207
https://www.degruyter.com/view/j/acv.ahead-of-print/acv-2015-0036/acv-2015-0036.xml?format=INT
http://preprints.sissa.it/xmlui/handle/1963/34533
Dal Maso, Gianni; Orlando, Gianluca; Toader, Rodica
File in questo prodotto:
File Dimensione Formato  
DM-Orl-Toa-Adv_Calc_Var_2016.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 1.01 MB
Formato Adobe PDF
1.01 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/11945
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact