Let $X$ be a compact connected K"ahler--Einstein manifold with $c_1(TX), geq, 0$. If there is a semistable Higgs vector bundle $(E, , heta)$ on $X$ with $ heta, ot=, 0$, then we show that $c_1(TX)=0$; any $X$ satisfying this condition is called a Calabi--Yau manifold, and it admits a Ricci--flat K"ahler form cite{Ya}. Let $(E, , heta)$ be a polystable Higgs vector bundle on a compact Ricci--flat K"ahler manifold $X$. Let $h$ be an Hermitian structure on $E$ satisfying the Yang--Mills--Higgs equation for $(E, , heta)$. We prove that $h$ also satisfies the Yang--Mills--Higgs equation for $(E, ,0)$. A similar result is proved for Hermitian structures on principal Higgs bundles on $X$ satisfying the Yang--Mills--Higgs equation. © 2016 International Press.
Yang-Mills-Higgs connections on Calabi-Yau manifolds / Biswas, I.; Bruzzo, Ugo; Graña Otero, B.; Lo Giudice, A.. - In: THE ASIAN JOURNAL OF MATHEMATICS. - ISSN 1093-6106. - 20:5(2016), pp. 989-1000. [10.4310/AJM.2016.v20.n5.a8]
Yang-Mills-Higgs connections on Calabi-Yau manifolds
Bruzzo, Ugo;
2016-01-01
Abstract
Let $X$ be a compact connected K"ahler--Einstein manifold with $c_1(TX), geq, 0$. If there is a semistable Higgs vector bundle $(E, , heta)$ on $X$ with $ heta, ot=, 0$, then we show that $c_1(TX)=0$; any $X$ satisfying this condition is called a Calabi--Yau manifold, and it admits a Ricci--flat K"ahler form cite{Ya}. Let $(E, , heta)$ be a polystable Higgs vector bundle on a compact Ricci--flat K"ahler manifold $X$. Let $h$ be an Hermitian structure on $E$ satisfying the Yang--Mills--Higgs equation for $(E, , heta)$. We prove that $h$ also satisfies the Yang--Mills--Higgs equation for $(E, ,0)$. A similar result is proved for Hermitian structures on principal Higgs bundles on $X$ satisfying the Yang--Mills--Higgs equation. © 2016 International Press.File | Dimensione | Formato | |
---|---|---|---|
1412.7738.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Non specificato
Dimensione
188.73 kB
Formato
Adobe PDF
|
188.73 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.